Farming 4.0

Two terms crop up at regular intervals: “precision farming” and “smart farming”. What do they mean?

Precision Farming

Precision farming is an agricultural concept involving new production and management methods that make intensive use of data about a specific location and crop. Sensor technologies and application methods are used to optimise production processes and growth conditions. In contrast to conventional agricultural methods, using digital data can increase resource and cost efficiency as well as reduce environmental impact.

Smart Farming

Smart farming (also known as Farming 4.0 and digital farming) is the application of information and data technologies for optimising complex farming systems. The integration of smart agricultural technologies and modern data technologies enables seed planting to be adapted to a specific field to ensure an efficient production process. The application of information and data technologies supports farmers in making informed decisions based on concrete data.

Digitization in farming – Farming 4.0

Information about the presence of different soil properties and productivity within a particular plot of land can be electronically retrieved from so-called field record files, enabling farmers to respond in real time. Satellite-controlled accurate lane guidance of agricultural machinery and intelligent sensors enables the targeted application of seeds, fertilisers and pesticides. This enables seed quantity as well as fuel consumption to be reduced.Future concepts will not just be about size and volume. Attributes such as “smaller”, “more intelligent”, “more efficient” are also becoming more important, especially for medium-sized agricultural enterprises. Aerial images taken using drones provide valuable information about fields, including for example soil quality, unwanted plants and plant diseases. Data is available relatively quickly and appropriate measures can be taken. Field robots are excellently suited to the gentle treatment of soil and plants because they are so lightweight. They are cloud-controlled and can be used to establish a specific sowing and fertilisation pattern. They are also able to remove individual weeds.However, drones and robots are only helpful to a limited extent on large acreages due to their limited flight/operating time. Large-scale crop cultivation still requires horsepower, harvesters and large agricultural machinery.

“Precision farming” is the targeted management of agricultural land using smart electronics. Examples include electronic devices for sensor-assisted soil assessment, the automated monitoring of free-ranging animals on pastures and the targeted control of agricultural machinery. Modern differentiated farming methods enable the management of spatial and temporal variability within plots of land.

Smart farming is also based on precise control electronics. This paves the way for enabling agricultural machines to communicate among themselves as they can all access electronic field record files. But how does a farmer process all this information? There are farm management systems, agricultural apps and online platforms to support farmers. “Smart farming”, often also referred to as “Farming 4.0”, involves not just individual machines but all farm operations. Farmers can access real-time data on mobile devices (mobile phones or tablets). Data about, for example, the condition of soil and plants, terrain, climate, weather, resource usage, manpower, funding applications is collected, processed and evaluated. An agricultural business rarely purchases modern machinery and equipment from a single manufacturer. So choosing equipment providers not only depends on how efficient the equipment is, but also whether devices can be flexibly connected with each other.

The advanced use of digital technologies in agriculture has the potential to meet growing global demand for food while ensuring the sustainability of primary production. The EU’s Horizon 2020 Programme for Research and Innovation funds projects in the “smart agriculture” sector.

The increased use of digital technologies in agriculture opens up many new markets. For more demanding and sensitised end consumers, farmers are able to create their own production chain for their produce. This is where start-up companies that create innovative products with intelligent systems come into their own. These systems document everything from crop cultivation, fields, mills, and processing plants in a way that customers can understand and trace.

The development of novel products also continues in the agricultural engineering sector. There is the expectation that innovative solutions will continue providing farmers with opportunities to feed the world whilst operating a profitable business. For example, agricultural GPS systems (e.g. AGCO, Claas, CNH, John Deere, Krone, Lemken, Rauch, etc.) can contribute to further reductions in the quantity of fertilisers and pesticides used. The farmers can use their own electricity to power new, fully battery-powered, emission-free and virtually noise-free tractors. Other models offer system-based ballasting and tyre pressure adjustment for resource and soil conservation. Modern agricultural engineering products mean that agriculture leads the way in the areas of sensors, digital positioning, optical recognition systems or data visualisation. Autonomously controlled harvesting machines have already become reality in agriculture: the machine processes information independently and makes at least partially autonomous decisions, while the farmer predominantly takes on a monitoring role. In Germany, the legal framework conditions, including safety and liability regulations have not yet been defined.

Farming Trends

According to the Food and Agriculture Organization of United Nations, the world population will reach 9.1 billion by 2050, and to feed that number of people, global production will need to grow by 70%. In the Middle East, the population is expected to be more 550 million by 2050.

The rising demand of this population will put pressure on the agriculture industry to ensure production and a sustainable environment while optimizing costs. Though the food processing & agriculture industry is plagued with a unique set of challenges, it is steadily becoming more consolidated and integrated, as new government and stakeholder investments grow.

Farming Trends

Digital Transformation help organizations within the agriculture sector to improve productivity, ensure faster time to market, operate a streamlined supply chain and reduce cost of operations.

How can we help you?

Contact us at THE Q SECTOR office nearest to you or submit a business inquiry online.

Looking for a First-Class Business Plan Consultant?

This website uses cookies and asks your personal data to enhance your browsing experience. We are committed to protecting your privacy and ensuring your data is handled in compliance with the General Data Protection Regulation (GDPR).